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a b s t r a c t

In this paper, the finite time consensus problem of distributed nonlinear systems is studied under
the general setting of directed and switching topologies. Specifically, a contraction mapping argument
is used to investigate performance of networked control systems, two classes of varying topologies
are considered, and distributive control designs are presented to guarantee finite time consensus. The
proposed control scheme employs a distributed observer to estimate the first left eigenvector of graph
Laplacian and, by exploiting this knowledge of network connectivity, it can handle switching topologies.
The proposed methodology ensures finite time convergence to consensus under varying topologies
of either having a globally reachable node or being jointly strongly connected, and the topological
requirements are less restrictive than those in the existing results. Numerical examples are provided to
illustrate the effectiveness of the proposed scheme.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Distributed consensus is a studydedicated to ensuring an agree-
ment between states or output variables among networked sys-
tems (Qu, 2009). It is well established that common challenges
in this venue are how to achieve consensus with the least possi-
ble topological requirement, and how to achieve it in a timely and
distributive manner. In this regard, distributed finite time consen-
sus became an instant popular topic in the community, especially
with recent advances on finite time stability (Bhat & Bernstein,
2000). Breakthroughs have beenmadewith both continuous (Jiang
&Wang, 2009; Khoo, Xie, &Man, 2009; Li, Du, & Lin, 2011;Ou, Du, &
Li, 2014; Shang, 2012;Wang&Xiao, 2010;Xiao,Wang, Chen, &Gao,
2009) and discontinuous inputs (Cao & Ren, 2012a,b; Chen, Lewis,
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& Xie, 2011; Cortés, 2006; Shi & Hong, 2009; Sundaram & Hadji-
costis, 2007). To be more precise, finite time consensus with con-
tinuous input can be treated as an extension of Bhat and Bernstein
(2000) tomulti-agent systems, and are in general conducted under
time-invariant graph. In particular, it is shown in Jiang and Wang
(2009); Wang and Xiao (2010); Xiao et al. (2009) that the graph
shall be undirected or directed but detailed-balanced in order to
achieve a finite time convergence. This condition is further released
in Shang (2012),where finite time consensus is ensured for digraph
(i.e., directed graph) with a spanning tree. In addition, applications
of continuous finite time consensus have been carried out in for-
mation control of leader–follower multi-agent systems (Li et al.,
2011) and nonholonomic robots (Ou et al., 2014), as well as robust
finite time tracking of multi-robot systems (Khoo et al., 2009).

Due to the highly nonlinear nature of discontinuous input (i.e,
signum/binary protocol), the convergence analysis of networked
systems with discontinuous input is extremely challenging, and
its solution, if possible, is often sophisticated. For instance, Cortés
(2006) pioneered finite time consensus with discontinuous in-
put, under undirected graph, using nonsmooth stability analysis.
In Chen et al. (2011), Filippov solution (Filippov, 1960) is intro-
duced for undirected and directed but detailed-balanced networks
using a binary protocol and pinning control scheme. The most
recent contribution for this topic witnessed the application of a
comparison-based Lyapunov approach in both directed (Cao&Ren,
2012b) and undirected (Cao & Ren, 2012a) networks. In addition,
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discrete finite time consensus of time-invariant network is inves-
tigated in Sundaram and Hadjicostis (2007) using weightedmatrix
with minimal polynomial of the smallest degree. Additionally, Shi
and Hong (2009) focuses on directed and switching network, and
it proves that digraph shall be quasi-strongly connected and con-
tain no direct circle at any interval, in order to ensure a finite time
convergence.

However, it should bepointed out that all of the aforementioned
results are derivedwith rather restrictive topological requirements
(i.e., undirected graph, digraph but detailed-balanced, or digraph
being quasi-strongly connected), finite time consensus of a generic
directed network with switching topologies has not received suf-
ficient attention. In this paper, we attempt to solve this problem
for a class of nonlinear systems under mild assumptions. The main
contribution of this paper is twofold: (i) what are the least conser-
vative topological requirements to ensure a finite time consensus
under directed and switching topologies? Is there a simple argu-
ment to perform the convergence studyof networked systemswith
discontinuous input? In this paper, we attempt to provide answers
to these two questions; and (ii) with the recent advance on net-
work connectivity of a digraph (Qu, Li, & Lewis, 2014),we propose a
distributive control scheme that makes finite time consensus pos-
sible over any jointly strongly connected network.

2. Preliminaries on graph theory

In this paper, we consider a digraph D = (V, E), where V =

{1, 2, . . . , n} and E denote the set of vertices/nodes and the set of
directed edges/paths, respectively. Vertex j is said to be adjacent to
vertex i if there exists a directed edge (j, i) ∈ E with node i being
the head and node j being the tail. Analogously, neighborhood set
Ni ⊆ V of vertex i is {k ∈ V | (k, i) ∈ E}. Without loss of any
generality, adjacency matrix A(D) used in this paper is weighted
and normalized as:

[A(D)]ik =


aik > 0 if k ≠ i, (k, i) ∈ E

1 −


k≠i

aik if k = i

0 otherwise.

(1)

That is, matrix A(D) is chosen to be nonnegative and row-
stochastic. Furthermore, we assume that the nonzero, and hence
positive, weighting factors are all uniformly lower and upper
bounded as a ≤ aij ≤ 1, where 0 < a ≤ 1, for any j ∈ Ni. As
such, the weighted graph Laplacian is

L(D) , I − A(D) (2)

where I is the identity matrix with proper dimension.
GraphD is said to have one globally reachable node if there exists

node i such that there is a directed path from node i to node j for all
j ∈ V with j ≠ i. Graph D is called strongly connected if there
is a directed path between any pair of vertices: a directed path
exists from i to k and so does a directed path from k to i for every
pair of vertices i, k; or every node is a globally reachable node; or
equivalently, Laplacian L(D) is irreducible (Qu, 2009).

According to (2), row sums of Laplacian L(D) are all zero. It
follows that λ1 = 0 is the smallest eigenvalue of L with right
eigenvector ν1 , 1

√
n1n and left eigenvector γ = [γi] ∈ ℜ

n defined
by

LTγ = 0, 1T
nγ = 1, (3)

where 1n , [1 . . . 1]T , and superscript T denotes matrix transpose.
By Perron–Frobenius theorem, all other eigenvalues have positive
real parts if the topology of graph D either has a globally
reachable node or is strongly connected. Moreover, as shown in Qu
et al. (2014), connectivity (and social standings in the connected
network) of D can be described by left eigenvector γ (and its
components). Existing results on γ and its distributed estimation
are summarized into the following lemma; its proof is omitted here
since it merely combines the results in Qu (2009); Qu et al. (2014).

Lemma 1. Consider graph Laplacian L defined by (2) with γ being
its left eigenvector defined in (3). Then, the following results hold:

• if D has a global reachable node, γ is unique and non-negative,
and γi > 0 (e.g., γi = 1) implies that node i belongs to the leader
group2 (e.g., being a sole leader), and γi = 0 means that node i
belongs to the follower group. If D is strongly connected, γi > 0
for all i;

• γ can be estimated distributively at system i by

˙̂γ
(i)

(t) =

n
j=1

aij(t)

γ̂ (j)(t) − γ̂ (i)(t)


(4)

where γ̂ (i)
∈ ℜ

n is the estimate of γ at system i, γ̂ (i)(t0) = ei,
ei ∈ ℜ

n is a vector of zeros except its ith entry being one, and
aij(t) are those defined in (1). Note that γ̂ (i)(t) = ei must be reset
once any topological switching is detected locally (by examining
its corresponding row components of L) and that such resetting
should be propagated to the neighbors.

The following lemma will be used in the subsequent technical
derivations.

Lemma 2. Consider Laplacian matrix L defined in (2) and its left
eigenvector γ defined in (3). Then, for any µ > 0 and t > 0 and
for any D with a globally reachable node,

e∓µLt
= 1nγ

T
+ Γse∓µΛstW T

s ,

where Λs is the Jordan form associated with eigenvalues λ2 up to
λn, Γs ∈ ℜ

n×(n−1) is the resulting matrix of corresponding right
eigenvectors after removing eigenvector 1n associated with λ1(L) =

0, Ws ∈ ℜ
n×(n−1) consists of all the left eigenvectors of A except

for γ .

To consider time-varying topologies, we introduce time se-
quence {tk : k ∈ ℵ

+
} for ℵ

+
= {0, 1, . . . ,∞}, and, without

loss of any generality, graph D(t) is time invariant during inter-
val t ∈ [tk, tk+1), that is, A(t+k ) = A(t−k+1).

3. Finite time consensus under switching topologies with
globally reachable node(s)

Consider the network control problem for n nonlinear systems
of identical dynamics:

ẋi = f (t, xi) + ui, i ∈ V, (5)

where xi ∈ ℜ
m is the state of the ith system, ui ∈ ℜ

m is the neigh-
boring feedback control to be designed, and f (t, xi) denotes the in-
dividual dynamics. For simplicity, m = 1 is set in the subsequent
technical discussion, and the general case of m > 1 can be ad-
dressed analogously.

Function f (t, xi) is assumed to be uniformly bounded with
respect to t and locally uniformly bounded with respect to xi. It is
obvious that system (5) is stabilizable, and hence it can be assumed
without loss of any generality that, for all xi(0) ∈ Ω0 and with
ui ≡ 0, xi(t) is uniformly bounded as xi(t) ∈ Ω and

∥f (t, xi)∥ ≤ ξf , (6)

2 Node i is said to be a leader (or belong to the leader group) if all edges initiated
at node i are tails (or for any j → i, node j is also a leader), node i being a follower
can be defined analogously.
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where ξf > 0 is a constant, Ω0 is the (compact) set of interest,
and Ω = {xi : |xi| ≤ ξx} for some constant ξx > 0. It is worth
noting that, for synchronization of nonlinear oscillators, Ω0 = ℜ.3
The following lemma establishes uniform boundedness under a
signum cooperative control.

Lemma 3. Consider the systems in (5) and under the signum protocol

ui = αsgn


n

j=1

aij(t)[xj − xi]


, (7)

where aij(t) are the entries of adjacencymatrix A defined in (1),α > 0
is a control gain, and sgn(·) denotes the classical sign function. Then,
xi(0) ∈ Ω0 implies both xi(t) ∈ Ω and inequality (6).

Proof. Define the indices sets associated with the maximal and
minimal state variables as:

V(t) =


i ∈ V : xi(t) = max

j∈V
xj(t)


V(t) =


i ∈ V : xi(t) = min

j∈V
xj(t)


.

(8)

It follows that, for any i ∈ V(t), ui ≤ 0 and in turn ẋi ≤

f (t, xi). Applying comparison theorem (Khalil, 2002), it follows the
maximum is preserved.

Similarly, the minimum is also preserved. Therefore, xi(t) ∈ Ω

and inequality (6) hold. �

The following lemma provides a result on contraction mapping
and finite time convergence, and its proof is trivial and thus
omitted for the sake of brevity.

Lemma 4. Consider the systems in (5). If ui are chosen such that the
maximum disagreement among the state variables, denoted by

δ(t) , xi∗(t) − xj∗(t), i∗ ∈ V(t), j∗ ∈ V(t), (9)

has the properties that δ̇(t) < 0 and |δ̇(t)| > ε for all time and
for some constant ε > 0, then finite-time consensus is ensured with
convergent time upper bounded by δ(t0)/ε.

The following theorem provides finite-time consensus by using
the argument of contraction mapping.

Theorem 1. Consider the systems in (5) and under cooperative
control (7). If time-varying digraphs D(t) have at least one globally
reachable node at every instant of time, then finite-time consensus can
be achieved by choosing α > 2ξf , and the convergence time is upper
bounded by (n − 1)δ(t0)/(α − 2ξ).

Proof. It follows from (7), (8) and Lemma 3 that, for any i∗ ∈ V(t),

ẋi∗ =

f (t, xi∗) if γi∗ = 1, i.e., sole leader
f (t, xi∗) if j ∈ Ni∗ H⇒ j ∈ V(t)
f (t, xi∗) − α if otherwise.

(10)

A similar expression can be obtained for ẋj∗ with j∗ ∈ V(t). Hence,
we have for any pair of i∗ ∈ V(t) and j∗ ∈ V(t),

δ̇ =


f (t, xi∗) − f (t, xj∗) if condition NC holds
f (t, xi∗) − f (t, xj∗) − α
f (t, xi∗) − f (t, xj∗) − 2α if otherwise, (11)

3 We owe this observation to an anonymous reviewer.
where condition NC (non-convergence) is defined byeither γi∗ = 1 & (l ∈ Nj∗ H⇒ l ∈ V(t))
or γj∗ = 1 & (l ∈ Ni∗ H⇒ l ∈ V(t))
or (l ∈ Ni∗ H⇒ l ∈ V(t)) & (l ∈ Nj∗ H⇒ l ∈ V(t)).

The requirement of (l ∈ Ni∗ H⇒ l ∈ V(t)) says that only those
state variables of the maximum value are connected to system i∗
and, given that D has at least one globally reachable node (already
specified by j∗), the second line in condition NC cannot hold for all
i∗ ∈ V(t) unless δ(t) = 0. This means that set V(t) will decrease
(entry by entry at the worst case), and the second line in condition
NC becomes invalid for all i∗ after an arbitrarily small period of
time. Similarly, one can argue that the other two lines of condition
NC will also become invalid. Therefore, we have

δ̇(t) ≤ |f (t, xi∗)| + |f (t, xj∗)| − α ≤ 2ξf − α < 0, (12)

for any choice of α > 2ξf . Finite-time consensus can then be
concluded by invoking Lemmas 3 and 4. �

The contraction mapping argument used in the proof of The-
orem 1 is straightforward in handling varying topologies and es-
tablishing finite-time convergence rate. The resulting topological
condition of digraphs having at least one globally reachable node
is less restrictive than those in the literature. For instance, the
requirement in Cortés (2006); Wang and Xiao (2010) is that the
graphs are undirected, and it is assumed in Chen et al. (2011); Shi
and Hong (2009) that directed graphs are either detailed-balanced
or quasi-strongly connected.

Note that Lemma 4 by itself is conservative because δ̇(t) < 0
is demanded for all t . As a result, Theorem 1 requires that all the
varying topologies are individually connected in the sense that
every topology has at least one globally reachable node, and its
proof involves the use of relevant properties of γi. Nonetheless,
Lemma4 is applied again in the next section to establish finite-time
consensus under the further relaxation that varying topologies
do not necessarily have a globally reachable node but are jointly
strongly connected.

4. Finite-time consensus under jointly strongly connected
topologies

The following assumption is introduced to describe jointly
strongly connected topologies.

Assumption 1a. Given time sequence {tk : k ∈ ℵ
+
}, varying

digraphs D(tk) are jointly strongly connected; that is, there is some
known constant T > 0 such that, over time intervals [lT , (l+1)T )
for l ∈ ℵ

+, the composite graph Dl (whose edges are the union of
E(tk) for all tk ∈ [lT , (l + 1)T )) is strongly connected.

Consider now the following distributed observer that records
the maximum and minimum values of the local state variables: at
system i,

xi(t) = max

xi(t−), max

j∈Ni
xj(t)


,

xi(t) = min

xi(t

−), min
j∈Ni

xj(t)


,

(13)

where xi(0) = xi(0) = xi(0). It follows that, as long as xj(t) stays
bounded by maxj xj(0) from above and by minj xj(0) from below,
xi(t) is monotonely increasing and upper bounded by maxj xj(0)
and xi(t) is monotonely decreasing and lower bounded by
minj xj(0). For any strongly connected graph, xi(t) and xi(t) reach
the maximum and minimum values in the graph, respectively and
instantaneously. Hence, we know from Assumption 1a that both



C. Li, Z. Qu / Automatica 50 (2014) 1626–1631 1629
xi(t) and xi(t) converge in a finite time (no later than (n − 1)T ) to
their consensus values, respectively.

The following distributed control assumes the knowledge of left
eigenvector γ : at system i,

ui =


αsgn


xi + xi

2
− xi


if condition IC holds

αsgn


n

j=1

aij(t)

xj − xi


if otherwise

(14)

where aij(t) are the entries defined in (1), and condition IC
(isolation condition) is defined by: at the ith system,

condition IC =


either γi = 1 (i.e., Ni = ∅)
or xℓ = xi, ∀ℓ ∈ Ni.

(15)

Condition IC is introduced to ensure that, under control (14), an
isolated/leading system or a system whose neighbors all have the
equal value would have its state be moved toward the average of
(xi + xi)/2 (which is a fixed point after a finite time). It is due to
this choice of condition IC (which requires the knowledge of γi)
that non-convergence phenomena such as oscillations and stalling
are avoided under jointly strongly connected topologies (which
individually may not have a globally reachable node). Essentially,
alternating equilibria or isolated equilibria (that could exist under
control (7) when varying topologies individually do not have a
global reachable node) cannot exist under control (14). The finite-
time consensus result is provided by the following theorem.

Theorem 2. Consider the systems in (5) and under cooperative con-
trol (14) with α > 2ξf . Suppose that varying topologies satisfy As-
sumption 1a and that the ith system has the local knowledge of γi,
the ith component of left eigenvector γ defined in (3). Then, xi(t) con-
verges to (xi + xi)/2 within a finite time no large than (n − 1)T +

(n − 1)δ(t0)/(α − 2ξf ).
Proof. Given (13), we know that (xi + xi)/2 reaches its consensus
after finite time instant t1 ≤ (n− 1)T , that is, there is a constant ca
such that

[xi(t) + xi(t)]/2 = ca ∀i ∈ V and ∀t ≥ t1.

Using the same argument in the proof of Lemma 3, we know that,
under control (14), xi(t) ∈ [mini xi(0), maxi xi(0)]. It follows from
(14) and (8) that, for any i∗ ∈ V(t) and for any t ≥ t1,

ẋi∗ =


f (t, xi∗) if (15) and xi∗ = ca hold
f (t, xi∗) + α if (15) and xi∗ < ca hold
f (t, xi∗) − α if (15) and xi∗ > ca hold
f (t, xi∗) − α if (15) does not hold.

A similar expression can be obtained for ẋj∗ with j∗ ∈ V(t).
Consequently, we know from the above expression and from
graphs being jointly strongly connected that, unless xi∗ (or xj∗ )
has already reached ca, i∗ (or j∗) satisfying (15) means finite time
convergence of ẋi∗ (or ẋj∗ ) to ca. On the other hand, if both i∗ and j∗
do not satisfy (15), we have

δ̇ = f (t, xi∗) − f (t, xj∗) − 2α,

in which case finite time convergence to a consensus is ensured
under the choice of α > 2ξf . Once such a consensus is reached,
condition (15) is met and finite-time convergence to ca is under
way. The proof is completed by invoking Lemma 4. �

It is worth noting that the choice of (xi + xi)/2 in (14) can
be replaced by any fixed convex combination of xi and xi for all i
and that, while the existence of T is required, its knowledge is not
required unless we need to predict the amount of time needed to
achieve the finite-time convergence. Performance of the proposed
finite-time convergence protocol is illustrated by the following
simple example.
Example 1. Consider the consensus problemof four systems in the
formof (5) andwith nonlinear dynamics f (t, xi) = 2 sin t sin xi and
initial states x(0) = [1 2 3 4]T . It follows from

dw
sinw

=
1
2
ln

1 − cosw

1 + cosw

that the uncontrolled systems are uniformly bounded.

Suppose that the network topology periodically switches ac-
cording to the digraphs Si in Fig. 1(a) and that all the commu-
nication channels are equally weighted. That is, digraphs Si with
i = 1, 2, 3 have a dwell time of 1 s and hold for time interval
[3k + i − 1, 3k + i) for k = 0, 1, 2, . . .. Hence, the cumulative
graph is strongly connected with T = 3 s.

It is straightforward to show that no consensus can be achieved
under input (7) but, as shown in Fig. 1(b), a consensus is reached
at time t = 3.2 s under the proposed protocol of (14) and with
α = 5. �

Finite-time consensus control (14) depends upon the knowl-
edge of γi and, in the subsequent section, a new distributed esti-
mator is provided to generate this information.

5. Distributed connectivity estimation of directed network

The primary left eigenvector γ has several implications: should
the topology be constant, it provides the consensus value of γ T x(0)
under the standard protocol (7); its entries describe the physical
interconnection of the nodes; and its knowledge can be used ei-
ther to improve the asymptotic convergence (Qu et al., 2014) or to
achieve the finite-time convergence as shown by Theorem 2. Esti-
mation of γ can be done using the distributed observer in Lemma1,
and it requires resettings of local observer’s initial conditions every
time when a topological switching is detected locally or a reset-
ting is propagated from one of the neighbors. Alternatively, we can
use the distributed estimator proposed below, and this new esti-
mation scheme does not need any resetting but requires synchro-
nization of time in order to inject sinusoidal functions. To ensure
fast convergence, the following assumption is introduced, and the
rationale is that an online estimation and control scheme would
not work if topology changes are arbitrarily fast.

Assumption 1b. Time sequence {tk : k ∈ ℵ
+
} of topology changes

has the property that (tk+1 − tk) ≥ T for some known constant
T > 0.

The proposed observer consists of two parts. The first part con-
sists of an nth-order distributed observer: at the ith system, the
observer state is defined by θ (i)

= [θ
(i)
1 . . . θ

(i)
n ]

T
∈ ℜ

n, and evolu-
tion of the kth entry of θ (i) is defined by

θ̇
(i)
k = µ

n
j=1

aij[θ
(j)
k − θ

(i)
k ] +


sinωt if k = i
sin t if k ≠ i, (16)

where µ > 1 is the gain to be chosen, and integer ω ∈ ℵ
+ is se-

lected such that ωT ≥ 16π . As the second part, the estimate of the
ith entry of γ is locally calculated at the ith system and using the
following formula:

γ̂i = lim
µ→∞

 t
t−∆


θ

(i)
i (τ ) + cos τ


cosωτdτ t

t−∆
cos τ cosωτdτ −

∆

2ω

, (17)

where ∆ is the period defined by

∆ =
2κπ

ω
, with κ ∈ ℵ

+ and κ ≤


ωT
16π


, (18)

and ⌊·⌋ denotes the floor operation.
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(a) Graph. (b) Consensus.

Fig. 1. Example 1.
It follows from (16) that θ
(i)
k involves according to the same

communication network described by A and that the correspond-
ing observer is distributed. In addition, the proposed estimator
contains two known, synchronized, and periodical perturbations
whose frequencies are chosen according to (16) and (18). Perfor-
mance of observer (16) and (17) is summarized into the following
theorem.

Theorem 3. Consider the graph Laplacian L defined in (2), and left
eigenvector γ defined in (3). Then, under Assumption 1b, γ can be
estimated locally using estimators defined in (16) and (17), provided
that µ is chosen to be sufficiently large.

Proof. It follows from (16) that

θ̇i = −µLθi + (1n − ei) sin t + ei sinωt (19)

where ei is the unit vector defined in Lemma 2, and θi =

[θ
(1)
i . . . θ

(n)
i ]

T is the overall estimator for the ith entry γi. The
subsequent analysis is done for (19), i = 1, . . . , n.

The solution to (19) is

θi(t) = e−µL(t−t0)

θi(t0)

+

 t

t0
eµLτ [(1n − ei) sin τ + ei sinωτ ] dτ


. (20)

Without loss of any generality, let us assume that L has at least
one globally reachable node (otherwise, a permutation matrix can
be used to transform L into a block diagonal matrix and the
subsequent derivations can be applied to each of its diagonal sub-
blocks). It follows from Lemma 2 that

e∓µLτ sinωτdτ +
cosωτ

ω
1nγ

T

= Γs(µ
2Λ2

s + ω2I)−1 (∓µΛs sinωτ − Iω cosωτ) e∓µΛsτW T
s .

Substituting the above expression into (20) and utilizing the
identities of (1nγ

T )2 = 1nγ
T , (Γse−µΛstW T

s )(1nγ
T ) = 0, and

(1nγ
T )Γs = 0, we have

θi(t) =

1nγ

T
+ Γse−µΛs(t−t0)W T

s


θi(t0)

+
cosωt0 − cosωt

ω
1nγ

T ei

+ (cos t0 − cos t)1nγ
T (1n − ei) + (Γse−µΛstW T

s )

×

Γs(µ

2Λ2
s + I)−1 (µΛs sin t − I cos t) eµΛst

− (µΛs sin t0 − I cos t0) eµΛst0

W T

s (1n − ei)

+ Γs(µ
2Λ2

s + ω2I)−1 (µΛs sinωt − I cosωt) eµΛst

− (µΛs sinωt0 − I cosωt0) eµΛst0

W T

s ei

.

Multiplying cosωt on both sides, integrating over the time interval
[t, t + ∆] with ∆ defined in (18), and recalling that t

t−∆

cosωτdτ = 0 and
 t

t−∆

cos2 ωτdτ =
∆

2
,

we obtain that t

t−∆

θi(τ ) cosωτdτ +

 t

t−∆

cos τ cosωτdτ

1nγ

T (1n − ei)

= −
∆

2ω
1nγ

T ei + (µ2Λ2
s + ω2I)−1 ωe−µΛst(eµΛs∆ − I) sinωt

+ µΛse−µΛst(I − eµΛs∆) cosωt

−

 t

t−∆

(Γse−µΛsτW T
s )

×

Γs(µ

2Λ2
s + I)−1 (µΛs sin τ − I cos τ) eµΛsτW T

s (1n − ei)

+ Γs(µ
2Λ2

s + ω2I)−1 (µΛs sinωτ − I cosωτ)

× eµΛsτW T
s ei

cosωτdτ . (21)

It follows from Lemma 2 that, as µ → ∞,

lim
µ→∞

e−µΛst = 0 and lim
µ→∞

(µ2Λ2
s + I)−1

= 0.

Consequently, for any t and for sufficiently large µ, Eq. (21) is
reduced to

lim
µ→∞

 t

t−∆

[θi(τ ) + cos τ1n] cosωτdτ

=

 t

t−∆

cos τ cosωτdτ −
∆

2ω


1nγ

T ei.

In particular, the ith entry of θi can be calculated as

lim
µ→∞

 t

t−∆


θ

(i)
i (τ ) + cos τ


cosωτdτ

=

 t

t−∆

cos τ cosωτdτ −
∆

2ω


γi,

from which (17) is concluded to estimate the left eigenvector γ
distributively. �

It follows that the convergence of (17) can be made faster
by making µ sufficiently small, which allows smaller ∆, and
indeed the proposed observer is naturally independent of any
resetting of its initial conditions, henceno further action is required
at either the local or network level when switching topologies
are considered. Hence, output γ̂i converges to the value of γi
distributively and the convergence can be achieved no later than
T/4 after each topology switching. Performance of the proposed
observer is illustrated in the following example.
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(a) System 1. (b) System 3.

Fig. 2. Estimation of first left eigenvector γ .
Example 2. Consider the time sequence {tk : k ∈ {3l + 1, 3l +
2, 3l + 3}; l ∈ ℵ} and suppose that A(t3l+j) = Aj, where

A1 =

 1 0 0
0.2 0.5 0.3
0 0.4 0.6


A2 =

0.8 0.2 0
0 0.5 0.5
0.4 0.4 0.2



A3 =

0.1 0 0.9
0.4 0.6 0
0.2 0.2 0.6


.

Their corresponding first left eigenvectors are γ (A1) = [1 0 0]T ,
γ (A2) = [0.43 0.35 0.22]T , and γ (A3) = [0.23 0.26 0.51]T ,
respectively. The proposed distributed observer given by (16) and
(17) is implemented with µ = 1000, ω = 60, and ∆ = π/30 sec.
As shown in Fig. 2, the convergence performance of the observer is
prompt and accurate.

6. Conclusion

Finite time consensus of a class of nonlinear systems is in-
vestigated under directed and switching topologies. A contraction
mapping argument is used to study the convergence properties
and to establish the connection between convergence and vary-
ing topologies. It is shown that, should the first left eigenvector
is known or can be estimated locally, finite time consensus can
be ensured if varying topologies either individually have a glob-
ally reachable node or over time are jointly strongly connected. In
addition, a novel distributed observer is proposed to estimate the
first left eigenvector so that the estimation-based control scheme
not only is distributed but has finite-time convergence under
switching topologies.
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